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region I causes a stress-optical effect that is visible un­
der the petrographic microscope. If a polished thick 
or thin section of the assemblage is made parallel to a 
section of zero birefringence in the host away from 
the influence of the inclusion, this effect, due to a field 
of deviatoric stress, expresses itself between crossed 
polars as a piezobirefringent halo. The boundary is 
then recognizable as the limiting PoT line for disap­
pearance of the piezobirefringent halo . 

Although it is more nearly precise to consider the 
assemblage in three dimensions, it is also useful in 
many cases to reduce the conceptual model to one 
that is approximately two dimensional rather than 
three dimensional (Rosenfeld, 1969, p. 318-329, 338). 
This particularly applies to thin sections in which a 
host-inclusion combination is cut so thin and in such 
an orientation as to have the cavity boundary 
penetrate the section essentially perpendicularly . The 
same analysis as in the previous paragraph applies, 
except that only strains parallel to the section are 
considered. The comparable subdivisions of the poT 
diagram in this case will, in general, be different from 
that for the three-dimensional case except for highly 
symmetric combinations in which both host and in­
clusion are cubic. The boundaries, in either case, in­
clude Pc and Te. 

The principal advantages of the two-dimensional 
simplification over the three-dimensional approach 
are: (I) ease of laboratory observation: thin sections 
readily permit laboratory identification of conditions 
of equal strains in host and inclusion; (2) the fact that 
the direction of eq ual strains is very nearly restricted 
to the plane of the section; (3) the fact that sectioning 
permits access of a fluid medium of low viscosity and 
th us the operating pressure of the system to the 
region between host and inclusion;· and (4) the fact 
that the piezobirefringent halo becomes sensitive not 
only to P and T but also to the angular relations 
among the host, inclusion, and thin section .5 

• Rosenfeld (1969, p. 320-326, 330) makes applications based on 
the two-dimensional approach, which entails relaxation by thin­
sectioning of some or all of the elastic strain due to deviatoric 
stress. Determination of the angular relations for elimination of 
that strain is an essential feature of the method. That this approach 
can only be approximate when dealing with noncubic minerals 
results from the necessarily finite thickness of the thin section, the 
irregular shapes of real inclusions, and the possible presence of 
shear stresses parallel to the host-inclusion contact. 
• As an example, let 0 be the angle between the section normal and 
c of a uniaxial inclusion (e.g. , quartz) in an optically isotropic host 
(e.g .. garnet). A P- T region will exist for which the condition of ap­
pearance of a piezobirefringent halo at a particular P and Tis 0 > 
0<, where 0< is the limiting value of 0 for which a halo appears 
(Rosenfeld, 1969, p. 320-323). 

As defined in Part I, an isomeke is any poT curve 
along which the distance between two reference 
points embedded in the hydrostatically stressed host 
mineral remains equal to that between two reference 
points embedded in the hydrostatically stressed inclu­
sion mineral. The boundary between regions I and II, 
mentioned above, is an isomeke. 

Determination of any isomeke, passing through Pr, 
Te, is a two-step procedure. First, a comparison 
dilatometer (see Part I) is constructed using pieces of 
the host and inclusion minerals being studied. This 
device is designed to monitor a set of isomekes pass­
ing through a P- T region that is sufficiently large to 
include any possible values of Pr and Tr. Each 
isomeke, by definition, shares the property that it is a 
P- T trajectory for which the length of an ap­
propriately oriented line segment between two points 
of reference6 embedded in a piece of the inclusion 
mineral equals that between similarly defined points 
in a piece of the host mineral. Secondly, let some 
laboratory pressure (Pn ) and temperature (Tn) be 
found for which the piezobirefringent halo around 
the inclusion in the host is observed to vanish . The 
isomeke passing through Pr, Tr is then that particular 
isomeke passing through P n, Tn . The intersection of 
that isomeke with another, independently determined 
for some other host-inclusion combination in the 
specimen, uniquely specifies Pr,Tr, assuming that 
both combinations formed under the same condi­
tions. 

Relationship of Solid Inclusion Piezothermometry to 
Equations of State 

Because equations of state provide an alternate 
means for the determination of isomekes, it is 
desirable to clarify their interrelationship. 

Let the natural strain (Nadai, 1950, p. 73-74) E 
between two points of reference embedded in a given 
solid be defined as 

i == In (D = In (I + ~) (1) 

where 
I == distance between the points at some P and T 
o == subscript indicating standard conditions, P = 

bar and T = 25°C, not necessarily on a desired 
isomeke. 

• The line segments connecting the reference points in each piece 
also must parallel the crystallographic directions within host and 
inclusion for which the strains are equal in the conceptual niodel. 
While it is simple to identify these directions for minerals of high 
symmetry (see, for example, Rosenfeld, 1969, p. 318-327), a 
general procedure that is also applicable to minerals of the least 
symmetric crystal systems has not yet been developed. 
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Then the natural strain difference. ~z - y . between the 
line segments connecting two reference points 
embedded in solid x and two reference points 
embedded in solid y at some arbitrary P and T is 

(2) 

Now an isomeke. by definition. is a curve in P and T 
along which two reference points embedded in x 
remain the same distance apart. Ix. as that between 
two reference points embedded in y . Iy. or 

Ix = Iy (3) 

The location of the isomeke is uniquely determined 
by the ratio of Iy to Ix at standard conditions. Iyo/ lxo. 
which is a constant, not necessarily equal to unity. for 
a given isomeke. To see this, from Equation (I) we 
obtain 

In Ix = f.o: - In 1.0:0 

In Iy = fy - In Iyo 

Subtracting Equation (4b) from 
Equations (2) and (3), we find 

(4a) 

(4b) 

(4a) and usmg 

(5) 

~.o: - y is thus constant along a given isomeke and can, 
in principle. be determined at standard conditions by 
measuring 1:'0 and Iyo. From Equation (2) the 
relationship between an isomeke and the equations of 
state of two solids is also evident. An isomeke is 
found to be any curve in P and T along which the 
difference in natural strain is constant. Thus a good 
graphical way to see the functional relationship 
between isomekes and equations of state is a P-T 
diagram with contours of constant natural strain. 
The superposition of such diagrams for x and y 
allows determination of isomekes by a simple 
procedure. Each isomeke is a contour of constant 
difference, ~x -y, in natural strain .7 If, eventually, an 
accurate way for measuring ~.o:- y can be incorporated 
into our system of comparison dilatometry and the 
equation of state of x is known, it follows from 
Equation (2) that fy can be determined all along the 
isomeke characterized by that ~.o: -y by subtraction of 
o .o:_y from f.o:. The equation of state of y could thereby 

7 The method of plotting isomekes is identical to that used by 
geologists in plotting convergence maps. maps showing contours 
of constant vertical component of thickness of a stratigraphic unit 
(Lahee. 1941. p. 649-654). 

be determined by generation of suitably spaced 
isomekes. 

The differential equation of an isomeke also 
follows from Equation (2). The total differential of 
ox- .v is 

= (iJ lJr- . ) dT + (iJ lJr- . ) dP 
iJ T " iJP T 

At constant oz-.v. 

111r_!# == (iJiJpT) .r-. 
(iJ lJr- . / iJPh 
(iJ lJz_.!iJT),. 

- [(iJ~r/ iJ Ph - (iJ~. / iJ Ph] _ It - 13. 
(iJi:rfiJ n" - (iJi:.! iJ n" - OIr - 01" 

(6) 

(7) 

where {3 and 0/ are. respectively. the isothermal linear 
compressibility and isobaric linear coefficient of 
thermal expansion. both simply defined as partial 
derivatives of f. 

There is ample reason, therefore, to use f-P-T 
diagrams in analyzing data from comparison di­
latometry. 

Calibration for Association Quartz-~amet 

The previous calculation of families of isomekes 
(Rosenfeld. 1969, p. 327-334: there called "integral 
null curves" or "isogons") for almandine-quartz was 
based on the very scant data on O/'s and {3's and on 
long-range extrapolation using more-or-Iess reason­
able boundary conditions. 

We present here the experimental calibration of the 
association quartz (q)-garnet (g), emphasizing garnet 
of the almandine type (garnet #1. in Table I and Fig. 
I). Limited experiments on other garnets. whose 
compositions are also shown in Table I and Figure I, 
allo·w some generalization about the effect of solid 
solution on the almandine-quartz isomekes. All gar­
nets were analyzed by electron microprobe. 

Experimental Results 

Results for Pair: Quartz-Almandine-Type Garnet 

Figures 2. 3. and 4 show data points within the 
region bounded by the low-high quartz transition and 
7 kbar for isomekes of almandine-type garnet (garnet 
#1) relative to quartz. In Figure 2 the quartz rod is 
oriented 1- c; in Figure 3 it is oriented at an angle of 
45° relative to c; and in Figure 4 it is oriented II c. The 
curves in these figures are derived as described in a 
section below. For convenience in petrographic 
utilization (Rosenfeld. 1969. p. 327-328), the curves 
are identified by sin2(J, where (J is the angle between 


